Publications List Search Advanced Filters Author - Any -TestH. F. AasD.S. AbbotAnne-Sofie AhmA-S.C. AhmM. AleneE.W. AlexanderA. AndersT AndersonJ.K. AnsongE. AntillaB.K. ArbicY. AshkenazyJ. AustermannS.M. AwramikJ-R. BahamondeN BasovaR. BeachE.A. BellD.I. BennH BentheY BerkmenS BernasconiT. BerquóM. BizzarroC.J. BjerrumS. Blanco-FerreraS. BluherD.H. BoggsU. BoldKyle BonickiC.S. BorlinaT. BosakK BoseS.A. BowringE. BoyleJ.J. BrocksS.D. BurgessC.C. CalmetA. CampionC.Y. ChenDaniele CherniakR. CoeP.A. CohenD. CondonJ. ConnellyB. CornuelleF.A. CorsettiJ.M. CottleG.M. CoxE. CrawfordJ.R. CrevelingP.W. CrockfordJ.L. CrowleyH. DaherT. DahlH. DangCurtis DeutschCurtis DeutschE. DomackY. DonnadieuAlexander DregerF.Ö. DudásT Dvoretskova VBlake DyerB. DyerM.P. EddyStacey EdmonsondI. EisenmanJ.F. EisnsleD.H. ErwinD.A.D. EvansR.C. EwingAthena EysterI.J. FairchildJ. FeinbergL. FernándezD. FerreiraD.A. FikeW.W. FischerRuth FongO. FringerR.R. FuI. Garrick-BethellM. GebreslassieA. GetraerE.C. GeymanEmily GeymanEmily GeymanB.C. GillB. GiritL. GodfreyJ.C. GoodmanD GreenwoodJ. GrotzingerG HaberlandC.J. HagenB. HaileabKarl HallgrenG.P. HalversonV. HanusP.M. HarrisR.J. HarrisonT.M. HarrisonJoe HaumacherC.C. HayC. HayesW HendricksonJohn HigginsJ.A. HigginsP.F. HoffmanM. HofmannBolton HowesB. HowesM. HuberM.T. HurtgenJ.M. HussonJon HussonP. HuybersO IsaacA. IshidaAkizumi IshidaM.F. JansenG.R.T. JenkinD.T. JohnstonD.S. JonesJ.A. KaandorpJaap KaandorpZ KaganT. KeelerK.W. KellersonJ. KelloggNigel KellyT. KillianH.M. KirkpatrickJ.L. KirschvinkK. KitajimaKouki KitajimaJ. KohlerT KoivulaM KoivusaloR.E. KoppV KotsjurubaA. KouchinskyM. KunzmannM. LambA LandeK. LatychevH.C.P. LauG. Le HirK. LewisD. LiC LimE.A. LimaU. LinnemannB. LinzmeierBenjamin LinzmeierS. LockK.L. LouzadaG.D. LoveS. LuckA. LukyanovF.A. MacdonaldS.A. MacLennanA MakarAdam MaloofAdam MaloofA.C. MaloofAdam MaloofAdam MaloofA.C. MaloofRyan ManzukR.A. ManzukRyan ManzukRyan ManzukJ MarniemiCraig MartinJ.A. Mattias GreenM. MazouadDavid McGeeD. McGeeK McMartinJ MegermanA.K. MehraAkshay MehraD. MenemenlisO. Merino-ToméA.J. MerschatSenne MichielssenR. MitchellJ.X. MitrovicaStephen MojzsisJ.L. MooreS. MukhopadhyayM. MüllerR MurphyA MusjalkovskajaMatthew NadeauC.Z. NashClaire NicholsF NuttallS. OleynikSergey OleynikM. OppenheimerM PaleseIndu PanigrahiY. ParkM ParkkiC.A. PartinS. PedersenS. PetersShanan PetersD. PierceG. PoirierL. PoppickS.M. PorterP.M. PoussartD.S. PowarsT PozdnjakovaC. ProistosescuD ProtvinSam PurkisS.J. PurkisR.H. RainbirdJ. RamezaniJ. RamezaniG. RamsteinT.D. RaubA.H.N. RiceM. RomalisA. RooneyC.F. RootsC.V. RoseB.E.J. RoseR RoskoskiL RoskoskiW. RozenP.M. SadlerBradley SamuelsB.M. SamuelsJ. Sanz-LópezR SarmaM. SchindeleggerM.D. SchmitzA SchmoldtB. SchoeneBlair SchoeneD.P. SchragD. SchumannC. Scott SouthworthF.J. SimonsE SinelnikovaDevdigvijay SinghT SlotkinS.A. SouleAlex SpatzierS.T. StewartDaniel StolperJ.V. StraussN.L. Swanson-HysellN. TailbyA TanF. TangA. Tasistro-HartR.J.M. TaylorT TephlyT. TesemaK ThiemerD. TrailM.M. TremblayAndrew TurnerAndrew TurnerE. TzipermanT UgarovaH. ValiJ. ValleyJohn ValleyL ValzelliW.J.J. van PeltV VinogradovaA. VoigtK WardS.G. WarrenBruce WatsonE.B. Bruce WatsonW.A. WattersM. WebsterM. WebsterMark WebsterBenjamin WeissB.P. WeissM.M. WielickiJulia WilcotsJ.G. WilliamsB. WouterZiman WuNan YaoN. YaoMike ZawaskiW. Zhang Type - Any -ArtworkJournal ArticleMiscellaneousPatent Year - Any -202420232022202120202019201820172016201520142013201220112010200920082007200620052004200320022001200019991996 Keyword - Any -aeolianaerosolsAlice Springs orogenyalkalinityAnthropoceneantiparallel remanenceapparent polar wander (APW)archaeocyatharchaeocyath; biodiversity; Cambrian; coral; ecosystem engineering; paleoenvironment; reef; sponge; three-dimensionalasteroidsastrochronologyAustraliaBahamasbathymetrybiodiversitybiogenic magnetiteBitter Springs FormationCC isotopesCa and Mg isotopesCa isotopesCA-ID-TIMSCA-ID-TIMS U-Pb analysesCambrianCantabrian Zonecap carbonatecap dolostonecarbon cycleCarbon isotopesCarbonatecarbonate cyclescarbonate platformcarbonate sedimentcarbonate sedimentologyCarbonatesCarboniferousChemostratigraphic correlationchemostratigraphyclassificationclimatecoralcorecraterCryogeniancyclescyclostratigraphydetrital zirconsdiagenesisearly EarthEarth rotationEarth-Moon historyecosystem engineeringEdiacaranEdiacaran Earth historyexchange couplingferromagnetic resonancegeodynamogeomagnetic polarity time scalegeomorphologygiant ooidsglacial isostatic adjustmentGlaciationGlacioeustasyGreat Bahama BankGreat BasinhabitabilityHadean earthHelderberg Grouphelium isotopeshematiteHidden Markov modelsHolocenehotspotice wedgesimage processingimpactimpact cratersimpact-generated fieldsIsostasyIsotope stratigraphyJack HillsKeweenawan RiftKlonk EventLake BonnevilleLake LahontanLandsatlandscape evolutionlast interglacial periodLate Paleozoic Ice AgeLaurentiaLaurentide ice sheetLittle Ice AgeLonarLonar craterLunar orbitmachine learningMackenzie Mountains Supergroupmagnetofossilsmagnetotactic bacteriamantle viscosityMarinoanMarlboro ClayMarsmartiteMATLABmelt rocksmeteoric diagenesisMg isotopesMilankovitchmineral dustMoonmorphological analysisNeoproterozoicNuccaleena Formationobliquity of the eclipticOcean tidesooidooidsooliteorbital tuningoxygen isotopesPaleocene-Eocene thermal maximumpaleoclimatePaleoclimatologypaleoenvironmentpaleogeographypaleointensitypaleomagnetismPaleoshorelinesparasequenceperiglacialperiglacial featurespermafrostplate tectonicsreconstructionRedox proxiesreefremanent magnetizationremote sensingrock magnetismRodiniarunoff erosionsatelliteSeawaterseawater chemistrysedimentary faciessedimentary magnetismsedimentologyself-reversalserial sectioningShaler SupergroupshockShorelinesShuram excursionSIMSSnowball Earthsoftwarespectral analysisspherulesspongeSr isotopesSr/SrStill water levelStratigraphystream geometrystream networkStrontium isotopesSvalbardthorium isotopesthree-dimensionaltidal channeltidal flattidestime seriesTPWTrezona excursionTrezona Formationtrue polar wander (TPW)U–Pb geochronologyVictoria IslandWater depth Publications Category - Any -Cenozoic AnalogsExtreme Negative Carbon-Isotope AnomaliesImpact CratersSea Level during the Last Interglacial PeriodSnowball Earth HypothesisThe Atomic MagnetometerThe Cambrian ExplosionThe Geometry of Earth's Magnetic FieldTrue Polar Wander AuthorTitleTypeYear ABCDEFGHIJKLMNOPQRSTUVWXYZ 88 Publications A Ahm A-S, Maloof A, Macdonald F, Hoffman P, Bjerrum C, Bold U, Rose C, Strauss J, Higgins J. 2019. An early diagenetic deglacial origin for basal Ediacaran “cap dolostones”. Earth and Planetary Science Letters. 506:292–307. doi:10.1016/j.epsl.2018.10.046. Referenced from doi.org: An early diagenetic deglacial origin for basal Ediacaran “cap dolostones”. 58maloof.pdf Ahm A-S, Bjerrum C, Hoffman P, Macdonald F, Maloof A, Rose C, Strauss J, Higgins J. 2021. The Ca and Mg isotope record of the Cryogenian Trezona carbon isotope excursion. Earth and Planetary Science Letters. 568:117002. doi:10.1016/j.epsl.2021.117002. Referenced from doi.org: The Ca and Mg isotope record of the Cryogenian Trezona carbon isotope excursion. 76maloof.pdf Austermann J, Chen C, Lau H, Maloof A, Latychev K. 2020. Constraints on mantle viscosity and Laurentide ice sheet evolution from pluvial paleolake shorelines in the western United States. Earth and Planetary Science Letters. 532:116006. doi:10.1016/j.epsl.2019.116006. Referenced from escholarship.org: Constraints on mantle viscosity and Laurentide ice sheet evolution from pluvial paleolake shorelines in the western United States. 70maloof.pdf B Borlina C, Weiss B, Lima E, Tang F, Taylor R, Eisnsle J, Harrison R, Fu R, Bell E, Alexander E, et al. 2020. Reevaluating the evidence for a Hadean-Eoarchean dynamo. Science Advances. 6(15):1–9. doi:10.1126/sciadv.aav963. Referenced from doi.org: Reevaluating the evidence for a Hadean-Eoarchean dynamo. 67maloof.pdf C Campion A, Maloof A, Schoene B, Oleynik S, Sanz-López J, Blanco-Ferrera S, Merino-Tomé O, Bahamonde J-R, Fernández L. 2018. Constraining the Timing and Amplitude of Early Serpukhovian Glacioeustasy With a Continuous Carbonate Record in Northern Spain. Geochem. Geophys. Geosyst. 19(8):2647–2660. doi:10.1029/2017GC007369. Referenced from doi.org: Constraining the Timing and Amplitude of Early Serpukhovian Glacioeustasy With a Continuous Carbonate Record in Northern Spain. 57maloof.pdf Chen C, Maloof A. 2017. Revisiting the deformed high shoreline of Lake Bonneville. Quaternary Science Reviews. 159:169–189. doi:10.1016/j.quascirev.2016.12.019. Referenced from doi.org: Revisiting the deformed high shoreline of Lake Bonneville. 51maloof.pdf, 51maloof with supplement Corsetti F, Awramik S, Pierce D. 2003. Comment on: A complex microbiota from snowball Earth times: Microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA. Proceedings of the National Academy of Sciences. 100(8):4399–4404. doi:10.1073/pnas.0730560100. Referenced from doi.org: Comment on: A complex microbiota from snowball Earth times: Microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA. 05maloof.pdf D Daher H, Arbic B, Williams J, Ansong J, Boggs D, Müller M, Schindelegger M, Austermann J, Cornuelle B, Crawford E, et al. 2021. Long-term Earth-Moon evolution with high-level orbit and ocean tide models. Journal of Geophysical Research: Planets.:e2021JE006875. doi:10.1029/2021JE006875. Referenced from doi.org: Long-term Earth-Moon evolution with high-level orbit and ocean tide models. 77maloof.pdf Dahl T, Connelly J, Li D, Kouchinsky A, Gill B, Porter S, Maloof A, Bizzarro M. 2019. Atmosphere–ocean oxygen and productivity dynamics during early animal radiations. Proceedings of the National Academy of Sciences.:201901178. doi:10.1073/pnas.1901178116. Referenced from doi.org: Atmosphere–ocean oxygen and productivity dynamics during early animal radiations. 62maloof.pdf Dang H, Maloof A, Romalis M. 2010. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Applied Physics Letters. 97(15):151110. doi:10.1063/1.3491215. Referenced from doi.org: Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. 25maloof.pdf Dyer B, Maloof A. 2015. Physical and chemical stratigraphy suggest small or absent glacioeustatic variation during formation of the Paradox Basin cyclothems. Earth and Planetary Science Letters. 419:63–70. doi:10.1016/j.epsl.2015.03.017. Referenced from doi.org: Physical and chemical stratigraphy suggest small or absent glacioeustatic variation during formation of the Paradox Basin cyclothems. 43maloof.pdf Dyer B, Maloof A, Purkis S, Harris P. 2018. Quantifying the relationship between water depth and carbonate facies. Sedimentary Geology. 373:1–10. doi:10.1016/j.sedgeo.2018.05.011. Referenced from doi.org: Quantifying the relationship between water depth and carbonate facies. 56maloof.pdf Dyer B, Higgins J, Maloof A. 2017. A probabilistic analysis of meteorically altered δ13C chemostratigraphy from late Paleozoic ice age carbonate platforms. Geology. 45(2):135–138. doi:10.1130/G38513.1. Referenced from doi.org: A probabilistic analysis of meteorically altered δ13C chemostratigraphy from late Paleozoic ice age carbonate platforms. 50maloof.pdf Dyer B, Maloof A, Higgins J. 2015. Glacioeustasy, meteoric diagenesis, and the carbon cycle during the Middle Carboniferous. Geochem. Geophys. Geosyst. 16(10):3383–3399. doi:10.1002/2015GC006002. Referenced from doi.org: Glacioeustasy, meteoric diagenesis, and the carbon cycle during the Middle Carboniferous. 46maloof.pdf E Edmonsond S, Nadeau MD, Turner AC, Wu Z, Geyman EC, Ahm A-SC, Dyer B, Oleynik S, McGee D, Stolper DA, et al. 2024. Shallow carbonate geochemistry in the Bahamas since the last interglacial period. Earth and Planetary Science Letters. 627:118566. doi:10.1016/j.epsl.2023.118566. Referenced from www.sciencedirect.com: Shallow carbonate geochemistry in the Bahamas since the last interglacial period. 84maloof Ewing R, Eisenman I, Lamb M, Poppick L, Maloof A, Fischer W. 2014. New constraints on equatorial temperatures during a Late Neoproterozoic snowball Earth glaciation. Earth and Planetary Science Letters. 406:110–122. doi:10.1016/j.epsl.2014.09.017. Referenced from doi.org: New constraints on equatorial temperatures during a Late Neoproterozoic snowball Earth glaciation. 40maloof.pdf G Getraer A, Maloof A. 2021. Climate-Driven Variability in Runoff Erosion Encoded in Stream Network Geometry. Geophys Res Lett. 48(3):e2020GL091777. doi:10.1029/2020GL091777. Referenced from doi.org: Climate-Driven Variability in Runoff Erosion Encoded in Stream Network Geometry. 72maloof.pdf Geyman EC, Wu Z, Nadeau MD, Edmonsond S, Turner A, Purkis SJ, Howes B, Dyer B, Ahm A-SC, Yao N, et al. 2022. The origin of carbonate mud and implications for global climate. Proceedings of the National Academy of Sciences. 119:e2210617119. doi:10.1073/pnas.2210617119. Referenced from www.pnas.org: The origin of carbonate mud and implications for global climate. 81maloof.pdf Geyman E, Maloof A. 2019. A diurnal carbon engine explains 13C-enriched carbonates without increasing the global production of oxygen. Proceedings of the National Academy of Sciences.:201908783. doi:10.1073/pnas.1908783116. Referenced from doi.org: A diurnal carbon engine explains 13C-enriched carbonates without increasing the global production of oxygen. 63maloof.pdf Geyman E, Maloof A. 2020. Deriving tidal structure from satellite image time series. Earth and Space Science. 7:e2019EA000958. doi:10.1029/2019EA000958. Referenced from doi.org: Deriving tidal structure from satellite image time series. 69maloof.pdf Geyman E, Maloof A. 2019. A Simple Method for Extracting Water Depth From Multispectral Satellite Imagery in Regions of Variable Bottom Type. Earth and Space Science. 6(3):527–537. doi:10.1029/2018EA000539. Referenced from doi.org: A Simple Method for Extracting Water Depth From Multispectral Satellite Imagery in Regions of Variable Bottom Type. 59maloof.pdf Geyman E, Maloof A, Dyer B. 2021. How is sea level change encoded in carbonate stratigraphy?. Earth and Planetary Science Letters. 560:116790. doi:10.1016/j.epsl.2021.116790. Referenced from www.sciencedirect.com: How is sea level change encoded in carbonate stratigraphy?. 73maloof.pdf Geyman E, Maloof A. 2021. Facies control on carbonate δ13C on the Great Bahama Bank. Geology. 49(9):1049–1054. doi:10.1130/G48862.1. Referenced from doi.org: Facies control on carbonate δ13C on the Great Bahama Bank. 75maloof.pdf Geyman E, van Pelt W, Maloof A, Aas HF, Kohler J. 2022. Historical glacier change on Svalbard predicts doubling of mass loss by 2100. Nature. 601(7893):374–379. doi:10.1038/s41586-021-04314-4. Referenced from doi.org: Historical glacier change on Svalbard predicts doubling of mass loss by 2100. 78maloof.pdf H Halverson G, Maloof A, Hoffman P. 2004. The Marinoan glaciation (Neoproterozoic) in northeast Svalbard. Basin Research. 16(3):297–324. doi:10.1111/j.1365-2117.2004.00234.x. Referenced from doi.org: The Marinoan glaciation (Neoproterozoic) in northeast Svalbard. 06maloof.pdf Halverson G, Hoffman P, Schrag D, Maloof A, Rice A. 2005. Toward a Neoproterozoic composite carbon-isotope record. gsabulletin. 117(9-10):1181–1207. Referenced from doi.org: Toward a Neoproterozoic composite carbon-isotope record. 08maloof.pdf Halverson G, Kunzmann M, Strauss J, Maloof A. 2018. The Tonian-Cryogenian transition in Northeastern Svalbard. Precambrian Research. 319:79–95. doi:10.1016/j.precamres.2017.12.010. Referenced from doi.org: The Tonian-Cryogenian transition in Northeastern Svalbard. 53maloof.pdf Halverson G, Dudás F, Maloof A, Bowring S. 2007. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Neoproterozoic to Paleozoic Ocean Chemistry. 256(3):103–129. doi:10.1016/j.palaeo.2007.02.028. Referenced from doi.org: Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. 13maloof.pdf Halverson G, Maloof A, Schrag D, Dudás F, Hurtgen M. 2007. Stratigraphy and geochemistry of a ca 800 Ma negative carbon isotope interval in northeastern Svalbard. Precambrian Chemostratigraphy. 237(1):5–27. doi:10.1016/j.chemgeo.2006.06.013. Referenced from doi.org: Stratigraphy and geochemistry of a ca 800 Ma negative carbon isotope interval in northeastern Svalbard. 11maloof.pdf Hay C, Creveling J, Hagen C, Maloof A, Huybers P. 2019. A library of early Cambrian chemostratigraphic correlations from a reproducible algorithm. Geology. 47(5):457–460. doi:10.1130/G46019.1. Referenced from doi.org: A library of early Cambrian chemostratigraphic correlations from a reproducible algorithm. 60maloof.pdf Hayes C, McGee D, Mukhopadhyay S, Boyle E, Maloof A. 2017. Helium and thorium isotope constraints on African dust transport to the Bahamas over recent millennia. Earth and Planetary Science Letters. 457:385–394. doi:10.1016/j.epsl.2016.10.031. Referenced from doi.org: Helium and thorium isotope constraints on African dust transport to the Bahamas over recent millennia. 49maloof.pdf Hoffman P, Maloof A. 2001. Tilting At Snowballs, A comment on Proterozoic equatorial glaciation: Has ’snowball Earth’ a snowball’s chance?. The Australian Geologist. 117:21–25. 03maloof.pdf Hoffman P, Maloof A. 1999. The snowball theory still holds water. Nature. 397(6718):384. doi:10.1038/17006. Referenced from doi.org: The snowball theory still holds water. 01maloof.pdf Hoffman P, Halverson G, Domack E, Maloof A, Swanson-Hysell N, Cox G. 2012. Cryogenian glaciations on the southern tropical paleomargin of Laurentia (NE Svalbard and East Greenland), and a primary origin for the upper Russøya (Islay) carbon isotope excursion. Precambrian Research. s 206–207:137 – 158. doi:10.1016/j.precamres.2012.02.018. Referenced from doi.org: Cryogenian glaciations on the southern tropical paleomargin of Laurentia (NE Svalbard and East Greenland), and a primary origin for the upper Russøya (Islay) carbon isotope excursion. 34maloof.pdf Hoffman P, Abbot D, Ashkenazy Y, Benn D, Brocks J, Cohen P, Cox G, Creveling J, Donnadieu Y, Erwin D, et al. 2017. Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science Advances. 3(11):e1600983. doi:10.1126/sciadv.1600983. Referenced from doi.org: Snowball Earth climate dynamics and Cryogenian geology-geobiology. 52maloof.pdf Howes B, Mehra A, Geyman E, Wilcots J, Manzuk R, Deutsch C, Maloof A. 2024. The where, when, and how of ooid formation: What ooids tell us about ancient seawater chemistry. Earth and Planetary Science Letters. 637:118697. doi:10.1016/j.epsl.2024.118697. Referenced from www.sciencedirect.com: The where, when, and how of ooid formation: What ooids tell us about ancient seawater chemistry. 86maloof Howes B, Mehra A, Maloof A. 2021. Three-Dimensional Morphometry of Ooids in Oolites: a new tool for more accurate and precise paleoenvironmental interpretation. J. Geophys. Res. Earth Surf. 126(4):1–16. doi:10.1029/2020JF005601. Referenced from doi.org: Three-Dimensional Morphometry of Ooids in Oolites: a new tool for more accurate and precise paleoenvironmental interpretation. 74maloof.pdf Husson J, Higgins J, Maloof A, Schoene B. 2015. Ca and Mg isotope constraints on the origin of Earth’s deepest δ13C excursion. Geochimica et Cosmochimica Acta. 160:243–266. doi:10.1016/j.gca.2015.03.012. Referenced from doi.org: Ca and Mg isotope constraints on the origin of Earth’s deepest δ13C excursion. 44maloof.pdf Husson J, Maloof A, Schoene B. 2012. A syn-depositional age for Earth’s deepest δ13C excursion required by isotope conglomerate tests. Terra Nova. 24(4):318–325. doi:10.1111/j.1365-3121.2012.01067.x. Referenced from doi.org: A syn-depositional age for Earth’s deepest δ13C excursion required by isotope conglomerate tests. 35maloof.pdf Husson J, Maloof A, Schoene B, Chen C, Higgins J. 2015. Stratigraphic expression of Earth’s deepest δ13C excursion in the Wonoka Formation of South Australia. American Journal of Science. 315:1–45. doi:10.2475/01.2015.01. Referenced from www.ajsonline.org: Stratigraphic expression of Earth’s deepest δ13C excursion in the Wonoka Formation of South Australia. 41maloof.pdf Husson J, Schoene B, Bluher S, Maloof A. 2016. Chemostratigraphic and U–Pb geochronologic constraints on carbon cycling across the Silurian–Devonian boundary. Earth and Planetary Science Letters. 436:108–120. doi:10.1016/j.epsl.2015.11.044. Referenced from doi.org: Chemostratigraphic and U–Pb geochronologic constraints on carbon cycling across the Silurian–Devonian boundary. 47maloof.pdf Husson JM, Linzmeier BJ, Kitajima K, Ishida A, Maloof AC, Schoene B, Peters SE, Valley JW. 2020. Large isotopic variability at the micron-scale in ‘Shuram’ excursion carbonates from South Australia. Earth and Planetary Science Letters. 538:116211. doi:10.1016/j.epsl.2020.116211. Referenced from www.sciencedirect.com: Large isotopic variability at the micron-scale in ‘Shuram’ excursion carbonates from South Australia. 66maloof.pdf J Jones D, Maloof A, Hurtgen M, Rainbird R, Schrag D. 2010. Regional and global chemostratigraphic correlation of the early Neoproterozoic Shaler Supergroup, Victoria Island, Northwestern Canada. Precambrian Research. 181(1):43–63. doi:10.1016/j.precamres.2010.05.012. Referenced from doi.org: Regional and global chemostratigraphic correlation of the early Neoproterozoic Shaler Supergroup, Victoria Island, Northwestern Canada. 20maloof.pdf K Kopp R, Weiss B, Maloof A, Vali H, Nash C, Kirschvink J. 2006. Chains, clumps, and strings: Magnetofossil taphonomy with ferromagnetic resonance spectroscopy. Earth and Planetary Science Letters. 247(1):10–25. doi:10.1016/j.epsl.2006.05.001. Referenced from doi.org: Chains, clumps, and strings: Magnetofossil taphonomy with ferromagnetic resonance spectroscopy. 10maloof.pdf Kopp R, Simons F, Mitrovica J, Maloof A, Oppenheimer M. 2013. A probabilistic assessment of sea level variations within the last interglacial stage. Geophysical Journal International. 193(2):711–716. doi:10.1093/gji/ggt029. Referenced from doi.org: A probabilistic assessment of sea level variations within the last interglacial stage. 37maloof.pdf Kopp R, Simons F, Mitrovica J, Maloof A, Oppenheimer M. 2009. Probabilistic assessment of sea level during the last interglacial stage. Nature. 462:863 – 867. doi:10.1038/nature08686. Referenced from doi.org: Probabilistic assessment of sea level during the last interglacial stage. 17maloof.pdf Kopp R, Schumann D, Raub T, Powars D, Godfrey L, Swanson-Hysell N, Maloof A, Vali H. 2009. An Appalachian Amazon? Magnetofossil evidence for the development of a tropical river-like system in the mid-Atlantic United States during the Paleocene-Eocene thermal maximum. Paleoceanography. 24(4). Referenced from doi.org: An Appalachian Amazon? Magnetofossil evidence for the development of a tropical river-like system in the mid-Atlantic United States during the Paleocene-Eocene thermal maximum. 16maloof.pdf L Lewis K, Keeler T, Maloof A. 2011. New Software for Plotting and Analyzing Stratigraphic Data. Eos Trans. AGU. 92(5):37–38. doi:10.1029/2011EO050002. Referenced from doi.org: New Software for Plotting and Analyzing Stratigraphic Data. 28maloof.pdf Louzada K, Weiss B, Maloof A, Stewart S, Swanson-Hysell N, Soule S. 2008. Paleomagnetism of Lonar impact crater, India. Journal Article. 275(3):308–319. doi:10.1016/j.epsl.2008.08.025. Referenced from doi.org: Paleomagnetism of Lonar impact crater, India. 14maloof.pdf M Macdonald F, Schmitz M, Crowley J, Roots C, Jones D, Maloof A, Strauss J, Cohen P, Johnston D, Schrag D. 2010. Calibrating the Cryogenian. Science. 327(5970):1241. doi:10.1126/science.1183325. Referenced from doi.org: Calibrating the Cryogenian. 19maloof.pdf Pagination Current page 1 Page 2 Next page Next › Last page Last »